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USE OF ORGANIC ACIDS TO CONTROL LISTERIA  IN MEAT 

A low pH (acidic) environment has an adverse effect on the growth of Listeria 
monocytogenes but it is not only the specific pH of the medium which is important but 
also the type of acid, temperature, and other antimicrobial compounds which are present 
(7). Several researchers have noted that, in culture media, acetic acid has more potent 
antilisterial effects than lactic acid, which, in turn, is more inhibitory than hydrochloric 
acid (1,19,20,36). Although similar concentrations of citric and lactic acids reduce the pH 
of tryptic soy broth more than acetic acid does, addition of acetic acid results in greater 
cell destruction (19). Malic acid, the predominant organic acid in apples, is not as 
effective as lactic acid in suppressing growth of L. monocytogenes (4). Sodium diacetate 
(a mixture of acetic acid and sodium acetate) also significantly inhibits the growth of 
L. monocytogenes in broth cultures (32). Several experiments in culture media 
demonstrated that inhibitory effects of an acid are greater at lower temperatures 
(5,6,13,16,17,31). 

  Other factors, such as the presence of salt and other compounds used as 
preservatives, may modify the effects of organic acids on L. monocytogenes (6,16,21,31) 
and several models have been developed to describe these interactions (5,17,26). These 
models may provide useful estimates of the relative importance of different factors and 
the magnitude of inhibition to be expected but they may overestimate or underestimate 
the effects on L. monocytogenes in meat, such as bologna (17) and sausage (26). 

  Organic acids can interact with other preservatives to enhance their effects. Acetic 
and lactic acids enhance the antilisterial effects of monolaurin (25,27,28). Lactic acid 
increased the susceptibility of L. monocytogenes to heat shock in culture media (20). But 
no effect on thermal tolerance was observed in ground pork (39). 

  However, it should be noted that the effects of organic acids are not always positive 
in terms of food safety. Listeriae which are exposed to these acids and survive may repair 
themselves during storage at low temperatures and begin to multiply if other barriers are 
not present (9,14,29). Exposure to acid also induces stress responses in listeriae which 
make the bacteria more tolerant of more acidity, ethanol, and hydrogen peroxide (22). 

  Antilisterial effects of organic acids have been examined in several types of meats 
raw, cooked, and cured. Since carcass meat may be contaminated with L. monocytogenes 
during slaughter and packaging into retail cuts of meat, solutions of organic acids have 
been tested as washes or dips for removing listeriae from meat and/or inhibiting its 
growth during refrigerated storage. When lactic or acetic acids (1.5-4%) were sprayed on 
contaminated beef carcass or beef trim, large numbers of inoculated L. monocytogenes 
persisted and grew on the meat stored under refrigeration (10,11). On the other hand, if 
the beef was sprayed with 2% lactic or acetic acid before it was contaminated with 
L. monocytogenes, the residual activity of the acids suppressed the growth of the bacteria 
(12).    
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  Organic acids (1-3%) used as dips are usually more efficacious than carcass washes 
because some residual activity remains on the meat. These acid concentrations, generally 
cause no adverse effect on the sensory properties of the meat. L. monocytogenes and 
E. coli, however, are more resistant to acid treatments than Yersinia and Salmonella 
(14,34). Both lactic acid (1.7%) and acetic acid (2%) reduced L. monocytogenes 
populations on lean beef tissue by 2–3 logs for up to 7 days (33). In other experiments 
with raw beef, 2% fumaric acid was found to be a more effective antilisterial agent than 
1% acetic or lactic acid (30). When lean pork tissue and pork fat were artificially 
inoculated with L. monocytogenes and then dipped in 3% lactic acid or water for 15 sec, 
numbers of listeriae were reduced by 1-2 logs for the lean meat and up to 7 logs for the 
fat during 15 days of refrigerated storage (14). The more potent effects observed for pork 
fat were probably due to the fact that acid-treated fat was approximately 2.5 pH units 
lower than acid-treated lean tissue. A similar effect was observed in pork liver sausage 
with 22-67% fat treated with propionate or lactate: At higher fat levels, the kill was 
approximately 2-3 times greater (18).  

  The best treatment for artificially contaminated raw chicken legs was reported to be 
a wash with a 10% lactic acid/sodium lactate buffer, pH 3.0 followed by packaging in 
90% carbon dioxide, 10% oxygen. This procedure extended the shelf life of the chicken 
from 6 days to 17 days. Chicken treated with the lactate buffer without modified 
atmosphere packaging had a shelf life of 10 days (40). 

  Artificial contamination of frankfurters with L. monocytogenes followed by a 2 min 
dip in 1% lactic, acetic, tartaric, or citric acids resulted in a 1-2 log kill of the bacteria. 
However, surviving bacteria started growing during refrigerated storage. A dip in 5% 
acetic or lactic acids not only killed L. monocytogenes but prevented its regrowth during 
90 days storage (29). 

  Addition of 1.8% or 2% lactic acid to raw or cooked ground beef did not 
appreciably affect the survival and growth of L. monocytogenes (15,37). Data from 
another experiment indicated that lactic acid slightly reduced the thermal tolerance of 
L. monocytogenes in ground beef (23). Sodium diacetate (0.3%) delayed growth of 
L. monocytogenes in turkey slurry (31).  

  Sodium lactate (4%) was reported to suppress the growth of L. monocytogenes in 
cooked strained beef (8) and beef roasts (24). In both cases, however, there were viable 
listeriae left in the meat during refrigeration. L. monocytogenes inoculated onto cooked 
chicken which was treated with lactate were observed to have a longer lag phase but were 
still able to grow during storage (2). Brines containing monolaurin and lactate pumped 
into beef roasts (microwave-ready beef roasts) enabled a greater kill of L. monocytogenes 
during cooking in bags in water baths than brines with only lactate (35). 

  Cured meats, such as sausage, ham, and frankfurters, which contain salt and other 
preservatives are more susceptible to the listericidal effects of organic acids (3,17,18,26, 
29,38) 
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USE OF OTHER PRESERVATIVES TO CONTROL LISTERIA  IN MEAT 

Since Listeria monocytogenes can grow on a variety of processed meat products at 
refrigeration temperatures (9), a variety of chemicals which destroy or limit the growth of 
harmful microbes have been tested for the preservation of meat. Many of these 
compounds are well known and their effects on various bacteria and on meat quality have 
been thoroughly investigated; others have been introduced recently and are not as well 
studied. Some compounds are not very potent by themselves but in combination with 
other preservatives or storage conditions can suppress the growth of foodborne 
pathogens. Several researchers have developed models which describe the effects of 
different combinations of preservatives on the growth of L. monocytogenes in laboratory 
media (2,8,26,31). Although these models are useful, growth of L. monocytogenes in 
meat nearly always differs from that in culture media. 
 
Sodium chloride (NaCl). NaCl in growth media or foods can be a source of osmotic 
stress by decreasing water activity (aw). However, L monocytogenes is remarkably salt-
tolerant and able to withstand higher salt concentrations than Salmonella spp. and 
Yersinia spp. (13). In an experiment to determine the antilisterial effects of brine 
solutions which could be used as dips, L. monocytogenes easily survived 6 hours at 10°C 
in solutions containing 6, 16, or 26% sodium chloride (15). L. monocytogenes even grew 
in the 6% brine solution (15) and in meat peptone media containing 8% NaCl (40). The 
presence of sodium chloride in growth media also partially protects L. monocytogenes 
from other stresses such as heat in ground pork (45), lactocin 705 in minced beef slurry 
(41), and hydrogen peroxide in culture media (21). 

Although L. monocytogenes is halotolerant, salt is a stress and does depress 
growth rates (4,40). In combination with other compounds used in curing meats, NaCl is 
one factor contributing to the destruction or inhibition of L. monocytogenes 
(3,8,17,26,31). 

Nitrite. Nitrite alone is also not a very effective antilisterial agent. In turkey slurries 
(pH6.2), 30 ppm sodium nitrite was unable to inhibit the growth of L. monocytogenes at 4 
or 25°C (35). In beef slurries, 800 ppm was required to inhibit growth of L. 
monocytogenes (41). However, as with salt, in the presence of other curing agents 
(8,26,31,44) or lactocin 705 (41), nitrite can contribute to the suppression of L. 
monocytogenes at refrigeration temperatures. 

Trisodium phosphate (TSP). Trisodium phosphate has been used for decontamination 
of poultry carcasses (34) and can reduce bacterial contaminants by 1-2 logs. Spraying of 
TSP on beef carcass tissue contaminated with L. monocytogenes removed 1.3 log of cells 
but by the 7th day of cold storage, the remaining bacteria started to grow (6). Use of 10% 
TSP as a 15 sec dip removed only about 39% and 81% of L. monocytogenes at 10°C and 
4°C, respectively (5). In other experiments, in which L. monocytogenes was suspended 
on solutions of TSP, exposure to 8% TSP for at least 10 min was required to reduce 
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bacterial numbers by at least 1 log (36). E. coli O157:H7, Campylobacter jejuni and 
Salmonella typhimurium were all more sensitive than L. monocytogenes to TSP. 

Smoke/Liquid Smoke. Smoking of meat and fish is a well known preservation technique 
and has been shown to inhibit the growth of L. monocytogenes (27,32). Several 
experiments have also documented the antilisterial effects of liquid smoke additives. Of 5 
Red Arrow smoke products evaluated, CharSol-10 was the most effective against L. 
monocytogenes and reduced viable cells on the surface of beef franks by >99.9% after 72 
hours storage at 4°C (23). Another product, CharSol Supreme also had potent antilisterial 
effects in wiener exudate (7). Analysis of this product revealed that its active ingredient 
was isoeugenol and that this compound was more effective in the presence of acetic acid 
at pH 5.8. Experiments with 7 commercial smoke preparations used in Spain indicated 
that some were better antilisterial agents than others and that the most potent had higher 
concentrations of phenols (37). 

Plant Extracts. A variety of herbs and spices have been tested for their efficacy in 
suppressing the growth of L. monocytogenes in culture media. Plant extracts exhibiting 
antilisterial activity include: hop extracts (20), eugenol (1,10,11), pimento leaf (10,11), 
horseradish distillates (43), rosemary (21,30), cloves (21,30), cinnamic acid (19,33), 
furanocoumarins (38), and carvacol (18). Numerous other plant extracts have been tested 
but results were not always consistent. (10,18,21). Different commercial samples of plant 
essential oils and different varieties of the same herbs may exhibit differences in 
antilisterial potency because of varying amounts of critical compounds. Some plant 
extracts were also found to be effective against Listeria spp. in meat including rosemary 
in ready-to-eat pork liver sausage (30), horseradish distillates on roast beef (43), and 
eugenol and pimento leaf of refrigerated cooked beef (11). It should be noted that 
L. monocytogenes was usually less sensitive to these extracts in meat (compared to 
culture media) and sensitivity also varied with fat content of the meat. For hop extracts 
tested in dairy products, antimicrobial activity was higher in lower fat meats (20). 

Monolaurin and other monoglycerides. Several monoglycerides (glycerol with one 
esterified fatty acid) are effective inhibitors of L. monocytogenes in culture media 
(25,28,29,42) and in foods. In beef frank slurries (pH 5.0 and 5.5), mono-caprin, 
monolaurin and coconut monoglycerides, individually all inhibited the growth of L. 
monocytogenes (42). These individual compounds were not as effective in turkey frank 
slurries but combinations of monoglycerides were effective. Brines containing 
monolaurin and lactate pumped into beef roasts (microwave-ready beef roasts) enabled a 
greater kill of L. monocytogenes during cooking in bags in water baths than brines 
without monolaurin (39). Monolaurin appeared to be a more potent antimicrobial at lower 
temperatures and pH values (25,29,42). Also, planktonic cells of L. monocytogenes were 
more susceptible to monolaurin than cells attached to stainless steel surfaces (28). 

Chelators (Citrate and EDTA). Chelators, which bind metal ions, are not by themselves 
lethal to L. monocytogenes in the concentrations used in foods (46). However, these 
compounds interact with other preservatives and sometimes aid in suppressing the growth 
of L. monocytogenes in meats (1,25,31). In other cases, for example EDTA combined 
with nisin, the opposite occurs and EDTA reduces the antimicrobial effects of nisin (46). 
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Lysozyme. Hen egg white lysozyme suppressed the growth of L. monocytogenes in fresh 
pork sausage (bratwurst) for 2-3 weeks (16). 

Sorbate (Sorbic acid). Experiments using culture media revealed that L. monocytogenes 
was more susceptible to sorbate at lower pH (pH 5 vs pH 6) and at lower temperatures 
(5°C vs 30°C). (24) In beaker sausage sorbate was also a more effective inhibitor of L. 
monocytogenes at lower temperatures (14). Fat content of the sausage did not affect the 
potency of sorbate at 4°C but at 10°C, sorbate was a more effective in sausages 
containing 67% fat as compared to 22% fat. 
 
Other additives. Minimal inhibitory concentrations of methyl paraben (p-
hydroxybenzoate) for growth of L. monocytogenes in culture media were lower at pH 5 
than at pH 6 and at 5°C than at 30°C. Under similar conditions, methyl paraben was a 
more potent inhibitor of L. monocytogenes than sorbate (24). Sodium erythorbate did 
not appear to be an effective antilisterial agent in raw or cooked ground beef. (12).  
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USE OF BACTERIOCINS TO CONTROL LISTERIA  IN MEAT 

Bacteriocins are proteinaceous, antimicrobial compounds produced by many kinds of bacteria. 
Attempts to harness these compounds to control Listeria monocytogenes in meats have taken two 
approaches: (i) Add the bacteriocin directly to the food in a purified or partially purified form. 
(ii) Add the bacteriocin-producing bacteria to the meat so they will grow and produce 
bacteriocins in situ. Some recent reviews summarize results of experiments using bacteriocins to 
control L. monocytogenes in foods and discussed modes of action of these compounds, factors 
affecting their effectiveness, and development of resistance in L. monocytogenes (2,15,26). In 
particular, Muriana (26) discusses the use of bacteriocins for controlling L. monocytogenes and 
includes some earlier references which are not cited in this report.  
 
Bacterial Cultures. Since lactobacilli are known to produce many different bacteriocins and 
some are also used in starter cultures for sausage production, addition of these bacteriocin 
producers has been effective in reducing L. monocytogenes populations in many fermented meats 
(8,12,14,30,37). Some bacteriocinogenic strains do not grow well at refrigeration temperatures 
and thus may be more useful in controlling listeriae at temperature abuse conditions rather than in 
refrigerated storage (4). Other bacteria produce higher levels of bacteriocins at low temperatures 
(5). Bacteriocinogenic strains have also been used to control spoilage organisms (20). 
 
 Lactobacilli also produce lactic acid which acidifies the meat and, in some cases, 
antilisterial effects of lactobacilli have been traced to lactic acid rather than to bacteriocins (18). 
  
Lactocin 705. Lactocin 905, produced by Lactobacillus casei CRL 705, exerted a moderate 
inhibitory effect on the growth of L. monocytogenes in minced beef slurry (36). Further 
experiments with sodium chloride, nitrite, and lactate added to minced beef demonstrated that 
these curing salts reduced the effectiveness of lactocin 905 (35). 
 
Nisin. Nisin is currently being used for the preservation of some foods because of its GRAS 
status and well-known antilisterial effects. Several factors affecting the inhibitory activity of nisin 
were investigated in broth cultures (28) and a model was developed to predict possible effects in 
food systems. 
 
 Nisin is more effective in more acidic foods but L. monocytogenes, which has adapted to 
acidic conditions, becomes more tolerant of nisin (34). This tolerance, along with the 
development of nisin-resistant strains (23) and mutants (27,29) of L. monocytogenes may limit 
the effectiveness of nisin in some applications. One solution is the use of nisin in combination 
with another bacteriocin, e.g. leucocin F 10 (28) or with starter cultures of bacteria producing 
other antilisterial bacteriocins (29).  
 
 Recently, powders containing nisin and pediocin were produced from milk-based media 
and applied to food packaging materials (25). The bacteriocins did not diffuse through casings 
and packaging films and effectively inhibited listerial growth on meat surfaces. 
 
 In experiments with nisin used as a dip for meats, growth of L. monocytogenes on raw 
pork tenderloin (11), fresh ground pork (27), and cooked pork tenderloin (10) was inhibited. 
However, after a short time under aerobic conditions at 5°C, nisin-resistant listeriae started to 
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grow on the pork. Modified atmosphere packaging provided an additional hurdle and margin of 
safety.  

Nisin also inhibited the growth of L. monocytogenes on beef steaks (1) and cubes (6,40). 
Although vacuum packaging alone did not prevent listerial growth on steaks, nisin added to the 
meat before vacuum packaging effectively suppressed the growth of L. monocytogenes for 
4 weeks at 4°C (1). Inhibition of listerial growth on beef cubes was greater at refrigeration 
temperatures but even at room temperature growth was delayed for one day (6) This may afford 
some protection during short periods of temperature abuse. EDTA does not enhance the 
antilisterial activity of nisin on beef (40). 
 
 Other experiments indicated that a rinse with nisin reduced populations of 
L. monocytogenes attached to turkey skin and growth was further inhibited during refrigerated 
storage (22). 
 
Pediocin AcH. Pediocin has strong antilisterial effects in culture with a lower minimal inhibitory 
concentration (MIC) than nisin A or Z (24). However, in meat such as ground pork, this 
bacteriocin reduces L. monocytogenes populations by as much as 2 logs within 24 hours (19) but 
it loses its effectiveness over time apparently due to its rapid degradation by meat proteases (27). 
Encapsulation of pediocin in liposomes or the addition of an emulsifier (Tween 80) increased its 
antilisterial effects in beef slurries (7). Pediocin can also be used in combination with other 
preservatives, such as diacetate, lactate and nitrite, to ensure greater inhibition of 
L. monocytogenes in turkey slurries (31). Pediocin and pediocin-producing cultures added to 
wiener exudates killed L. monocytogenes at both refrigeration and room temperatures (38). In 
addition, pediocin-producing bacteria, added as part of starter cultures for the production of 
chicken summer sausage, killed listeriae during fermentation (3).  
 
 One advantage of using pediocin in meats is its resistance to thermal degradation. It can 
be added to raw chicken and will retain its activity after the chicken is cooked (13). Pediocin 
containing powders have been produced and applied to food packaging films which inhibit the 
growth of L. monocytogenes on the surface of meat (25). 
 
Reuterin. Reuterin (produced by Lactobacillus reuteri) is a broad spectrum antimicrobial agent 
which is water-soluble, effective over a wide pH range, and resistant to proteolytic and lipolytic 
enzymes. When added to the surface of cooked pork or mixed with ground pork, reduced 
populations of L. monocytogenes by 0.3 and 3.0 logs, respectively. Lactic acid enhanced the 
effectiveness of this bacteriocin (9). 
 
Sakacin. Sakacin P, produced by Lactobacillus sake LTH 673, inhibits the growth of Listeria 
ivanovii and this inhibition is increased by high NaCl concentrations and a low pH (12). Sakacin 
K, produced by L. sake CTC 494, inhibited the growth of Listeria innocua in raw minced pork, 
poultry breast meat, and cooked pork. The greatest reduction in listerial populations occurred in 
meats packaged in vacuum or modified atmospheres (17). L. sake CTC 494 appears to be a very 
useful organism for sausage starter cultures because the temperature and pH conditions present 
during fermentation of dry sausages are ideal for sakacin K production (21). 
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USE OF THERMAL PROCESSES TO CONTROL LISTERIA  IN 
MEAT 

Heat resistance of Listeria monocytogenes depends upon many factors including characteristics of 
different strains and serovars (2,32,44). Conditions known to affect the susceptibility of L. 
monocytogenes to thermal treatments include stage in the growth cycle, temperature during 
growth, and exposure to other stresses. Cells in stationary phase (31), those grown at higher 
temperatures (19 or 37°C) (2,27), and those previously exposed to stresses such as acid, ethanol, 
and hydrogen peroxide (31) are generally more resistant to thermal treatments. Thermotolerance 
is increased significantly after heat shock (30 min exposure to 48°C) in cells grown at 4°C (26) 
and tends to increase in cells grown at higher temperatures (4,5,13,14). Ranges of D values 
measured for L. monocytogenes in various types of meat are presented in a table at the end of this 
report. 
 
Beef. In raw ground beef, higher concentrations of fat (30.5%) appear to protect 
L. monocytogenes from heat while higher concentrations of lactate enhance bacterial destruction 
by heat (12). In the production of beef jerky, L. monocytogenes populations are reduced during 
heating and marination and become undetectable after a 10 hour drying period (23). For 
production of microwave-ready roast beef, cooking in a bag was twice as effective as without the 
bag since L. monocytogenes could survive on beef surfaces which had been cooked for up to 
45 min to a temperature of 62.8°C (47). Heating of beef loin chunks for 16 min at 85°C reduced 
L. monocytogenes populations by as much as 4 logs. However, some cells survived and might be 
able to grow under appropriate conditions (9). In a process simulating sous vide preparation of 
cooked beef, with slow heating, L. monocytogenes was killed as efficiently by the slow heating 
process as by faster heating. the reason for this difference from tests in pork (30,40) appears to be 
the low pH of 5.64 of the beef (19). 
 
Pork. L. monocytogenes is more heat resistant when mixed with raw ground pork than when 
suspended in broth medium (40). Addition of soy hulls to ground pork further protects listeriae 
from heat (38). When pork inoculated with L. monocytogenes is heated slowly, the thermal 
tolerance of these bacteria is much greater as compared to bacteria in pork heated rapidly (30,40).  
 
Cured meats. Investigations with beaker sausage demonstrated that heating the sausage to an 
internal temperature of 62.8°C was required to completely inactivate L. monocytogenes (17). 
Heating pepperoni at 51.7°C for 4 hours after drying destroyed listeriae but heating before drying 
was insufficient to eliminate the bacteria (17).  
 

Curing agents (usually a mixture of sodium chloride, sodium nitrite/nitrate, dextrose, etc.) 
protect L. monocytogenes in various types of sausage, ham, bologna and other cured meats from 
thermal destruction (13,29,32,43,48,49). When curing ingredients were considered separately, all 
except sodium nitrite and sodium erythorbate enhanced listerial thermotolerance in ground pork 
(15% fat) (48). Addition of κ-carrageenan to cured ground pork lessened the protective effects of 
curing salts (49). 
 

While many thermal processing treatments are very effective in killing foodborne 
pathogens, high temperatures or prolonged heating may alter some sensory characteristics of 
foods. Therefore, research is underway to determine appropriate combinations of heat and high 
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pressure treatments (1,28,36,45), irradiation, bacteriocins, or other antimicrobials (46) to produce 
safe and more organoleptically acceptable foods.  

D value ranges (min) for thermal inactivation of L. 
monocytogenes in different meats 

Meat D values at 60°C Reference(s) number 
ground beef - raw 0.24 – 12.53* 3,11,25,32 
ground beef - cooked 6.27 – 8.32 15 
ground chicken - raw 5.6 – 8.7 32 
ground chicken - cooked 5.02 – 5.29 15 
ground pork - raw 4.3 – 9.2 (62°C) 30 
ham 1.82 5 
sausage 7.3 – 9.13 2,40 
sous vide beef 6.4 – 7.1 19 
roast beef 1.625 18 
beaker sausage  43 

 *Variability related to differences in strains, pH, log vs stationary phase cells, heating rate. 
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USE OF IRRADIATION TO CONTROL LISTERIA  IN MEAT 

Irradiation can damage and destroy most foodborne bacteria including Listeria monocytogenes (Lm). (See 
reference 6 for a recent review.) Irradiation dosage, expressed in kiloGrays (kGy), is a function of the 
energy of the radiation source and the time of exposure. Effectiveness of a given radiation dose varies 
depending on the density, antioxidant levels, moisture, and other components or characteristics of the 
foods. External factors, such as temperature, the presence or absence of oxygen, and subsequent storage 
conditions also influence the effective-ness of radiation. A split dose application of irradiation increased the 
radiosensitivity of Lm to irradiation under some conditions(1). 
 
 Different isolates of Lm exhibit some variation in resistance to irradiation. Under similar 
experimental conditions, the range in D10 values in: (a) culture media was 0.28-0.34 kGy (11); (b) 
mechanically deboned chicken meat was 0.41-0.53 kGy (11); (c) minced raw chicken was 0.48-0.54 kGy 
(15); (d) ground beef was 0.5-1.0 kGy (3); (e) ground pork was 0.42-0.64 kGy (19). Listeria innocua, a 
nonpathogenic species, is similar to Lm in its sensitivity to irradiation and so may be used for the safe 
evaluation of irradiation processes for different meats (13). 
 
 In nearly all experiments, Salmonella and Listeria proved to be more resistant to irradiation than 
E. coli, Arcobacter, Campylobacter, Yersinia, and Staphylococcus (5,6,7,8,14, 22). Listeria and Salmonella 
appear to have a similar susceptibility to irradiation; in some experiments, Lm has a larger D10 value while 
in other cases, Salmonella appears to be more resistant (4,6,7,8,9,22). 
 
 Irradiation of Lm in laboratory media offers some useful preliminary information but Lm is 
significantly more resistant to irradiation in meats than in culture media (2,3,10,11,12,13,15). However, 
neither the fat content of the meat (14) nor the source (beef, chicken, lamb, pork, turkey breast, turkey leg) 
of raw meat (12,22) had a significant effect on D values for irradiation.  
 
 Factors which do affect the effectiveness of a radiation dose in meat include cooking, 
concentration of bacteria in the meat, and temperature during irradiation. Lm added to raw turkey nuggets 
was more susceptible to irradiation than that added to cooked turkey nuggets (23). At lower temperatures, 
the radiation resistance of Lm increased (2,12,20). With larger concentrations of Lm in solution or on meat, 
larger doses of radiation are required to destroy the cells (2,16). Therefore, if food is highly contaminated, 
the usual radiation dose may not kill all the Lm and, as several researchers reminded us, Lm can grow in 
the cold and surviving and damaged cells may begin to multiply if the irradiated meat is stored under 
refrigeration (10,24). 
 
 Heat treatments as in sous vide processing (9,17,18) and modified atmosphere packaging (7,21,24) 
have been found to enhance the safety of irradiated foods. In addition, salt, nitrites, and other compounds 
added to preserved meats may increase the effectiveness of a radiation dose: Lm is more radiation-resistant 
in uncured pork than in ham (4). These additives may act by amplifying the kill by irradiation or by 
preventing the repair and growth of damaged, surviving cells. However, there has been very little published 
research on the effects of irradiation on cured and processed meats. 
 
 Some recommended doses of irradiation include: (a) 3 kGy for elimination of 103 cells Lm/g in 
air-packed frozen chicken (12); (b) 2.5 kGy to kill 104.1 Lm/g in ground beef (14); (c) 2 kGy to destroy 104 
Lm in mechanically deboned chicken meat at 2-4ºC (11). 
 
 Food processors should be aware that various food additives and changes in processing parameters 
may affect the effective-ness of a radiation dose and that any surviving Listeria may grow to dangerous 
levels during storage at refrigeration temperatures if some other hurdle(s) to growth are not present. In 
addition, only a few types of plastic wraps and packaging are approved for use in irradiating packaged 
foods. 
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 Irradiation has been approved by the FDA (25,26) for the purpose of microbial disinfestation of: 
 
 fresh or frozen uncooked poultry to a limit of <3.0kGy 
 pork carcasses and meat (for Trichinella)  " <1.0kGy 
 packaged meat for NASA flights  " <44kGy 
 fresh or frozen red meat " 4.5kGy (fresh) 
   7 kGy (frozen) 
 
 Irradiation of red meat (not including processed ready-to-eat meats) was approved by the FDA in 
December, 1997 and the recommended procedures for irradiating meat have been published by the USDA 
in the Federal Register. (26) Since the periods for comments on these procedures has been extended, the 
final rules have not been published as yet (July 1, 1999).  
  
 A number of individual European countries have regulations in place permitting (or in some cases 
prohibiting) irradiation of foods under specified conditions. The European Community is at this time 
working to establish a common set of guidelines.  
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USE OF MODIFIED ATMOSPHERE PACKAGING TO CONTROL LISTERIA  IN 
MEAT 

Packaging of meats in modified atmospheres (MAP) containing low oxygen and/or high 
carbon dioxide levels can suppress the growth of foodborne pathogens as well as extend 
shelf life and preserve food quality. Several review papers discuss the advantages and 
disadvantages of various MAP systems with respect to the gases used, types of foods and 
packaging materials (8,13,30), effects on Listeria monocytogenes (7,30), and 
effectiveness of the combined use of MAP and irradiation (23). In addition, models have 
been developed to predict the growth of L. monocytogenes in culture media containing: 
(a) different concentrations of carbon dioxide (0–100%) and sodium chloride (0.5–8%) at 
pH 4.5–7.0 and 4–20°C (15); (b) carbon dioxide (10–90%) at pH 5.5–6.5 and 4–10°C 
(12); and (c) anaerobic nitrogen atmosphere with sodium chloride (0.5–4.5%) and sodium 
nitrite 50–1000 μg/ml at pH 6–7.5 and 5–37°C (4). Predicted listerial growth rates from 
one model were in good agreement with observed growth in chicken nuggets and raw and 
cooked beef (15). However, growth rates of L. monocytogenes on raw chicken were 
greater and on raw pork were much greater than those predicted by the model.  
 
 Results of numerous studies on the efficacy of different MAP systems in 
suppressing the growth of L. monocytogenes on different meats have been published in 
the past decade. However, data are not always consistent. This may result from variations 
in fat content and acidity of foods, storage temperatures, and the presence of other 
preservatives. MAP containing high levels of CO2 effectively inhibit growth of L. 
monocytogenes, particularly at low temperatures. However, L. monocytogenes does grow 
in the absence of oxygen and has been observed to multiply on vacuum packaged meat at 
pH >6. One general concern about MAP is that some atmospheres may inhibit spoilage 
bacteria but not significantly suppress L. monocytogenes or Clostridium botulinum. 
Therefore, after an extended period of refrigerated storage, the meat may appear to be 
unspoiled and safe to eat but, in fact, it harbors high levels of these pathogens (7,30). 
 
 A brief summary of recent experimental results follows. Parameters that appeared 
to affect results are noted but original papers should be consulted for full experimental 
details.  
 
Raw poultry. Storage temperature and carbon dioxide and oxygen levels in MAP 
significantly affect growth of L. monocytogenes on raw minced chicken (33), minced 
turkey (32), and turkey slices (24). An atmosphere containing 75% CO2 inhibited growth 
at 4, 10, and 27°C but the addition of just 5% oxygen allowed growth at all of these 
temperatures (33). However, the presence of 60 or 80% oxygen prevented growth of L. 
monocytogenes at 1°C (24). Although irradiation (2.5 kGy) of ground turkey drastically 
reduced numbers of L. monocytogenes, surviving cells were able to grow at 7°C under 
atmospheres containing no oxygen and ≤64% CO2 (32). 
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  A lactate buffer, pH 3.0, combined with an atmosphere of 90% CO2 inhibited 
growth of L. monocytogenes on chicken legs for nearly two weeks (34). Lactate by itself 
suppressed growth for about a week while the MAP alone suppressed growth for 2–4 
days. 
 
Cooked poultry. Temperature was also very important in limiting the growth of 
L. monocytogenes on cooked chicken breast (4,6), precooked chicken nuggets (26,27), 
chicken loaves (18), poultry cuts (4), and turkey roll slices (14). Despite vacuum 
packaging or atmospheres containing as much as 80% CO2 and no oxygen, L. 
monocytogenes was able to grow on cooked poultry at temperatures between 6.5 and 
11°C (3,4,6,18,26,27). At lower temperatures (6.5–7°C), MAP and the presence of lactate 
slowed the growth of L. monocytogenes somewhat even though they were not able to 
completely inhibit it (3,6,18). At 4°C, 70% CO2 levels and vacuum packaging did 
suppress the growth of L. monocytogenes for 28 days in turkey roll slices (14) and 
chicken breast (6). 
 
Raw pork. A study of the incidence of contaminated pork loins and Boston butts 
packaged in MAP revealed that very few butts were contaminated with L. monocytogenes 
while loins packaged under vacuum or in an atmosphere of 66% oxygen, 8% nitrogen, 
and 26% CO2 had fewer contaminants than those packaged in air (29). Vacuum 
packaging did not prevent the growth of L. monocytogenes on hot or cold packed pork 
loin (22) or pork chops (25). Neither did vacuum packaging or a modified atmosphere 
(25% CO2 : 75% nitrogen) prevent the growth, in ground pork, of listeriae injured by heat 
(20) or irradiation (16).  
 
 At 4°C, an atmosphere of 100% CO2 did inhibit the growth of L. monocytogenes 
on raw pork tenderloin (11). Addition of nisin to pork tenderloin significantly suppressed 
growth of listeriae under both air and MAP (100% CO2 and 80% CO2 : 20% air) at both 4 
and 20°C (11).  
 
Cooked pork. L. monocytogenes, inoculated along with Pseudomonas fragi, on cooked 
pork tenderloin and grew as well under modified atmospheres (100% CO2 and 80% CO2 : 
20% air) as in air at both 4 and 20°C (10). Nisin solutions, used as 20 min dips for pork, 
prevented growth of L. monocytogenes under air and MAP at both temperatures. 
 
Raw beef. Saturated carbon dioxide packaging but not vacuum packaging suppressed the 
growth of L. monocytogenes on beef steaks stored at 5 and 10°C for 3–6 weeks (2). 
Further experiments demonstrated that when contaminated steaks, which had been stored 
under a saturated carbon dioxide atmosphere at 1.5°C, were removed from storage and 
kept at 12°C (gross temperature abuse), L. monocytogenes still failed to grow or grew 
extremely slowly (1).  
 
 Although vacuum packaging alone was insufficient to prevent listerial growth in 
ground beef stored at 4°C for 9 weeks, the addition of Lactobacillus alimentarius L-2 to 
the beef caused about a 2 log decline in final numbers of L. monocytogenes (19). Since 
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these lactobacilli do not produce bacteriocins, their inhibition is believed to be due to the 
production of lactic acid. 
 
Cooked beef. Vacuum packaging of roast beef slices failed to prevent growth of 
L. monocytogenes at –1.5°C (17) or 3°C (17,28). A saturated carbon dioxide atmosphere 
caused L. monocytogenes populations to decline at –1.5°C and lengthened the lag phase 
at 3°C so that by the time L. monocytogenes grew the meat already appeared spoiled (17). 
 
Cured meats. Tests with atmospheres containing 20, 30, 50 or 80% CO2 demonstrated 
that only the highest carbon dioxide level was sufficient to inhibit growth of L. 
monocytogenes on frankfurters at both 4.7 and 10°C (21). An atmosphere with 50% 
carbon dioxide inhibited listerial growth only at the lower temperature. Neither vacuum 
packaging nor an atmosphere with 30% CO2 : 70% nitrogen inhibited listerial growth on 
ham or lunch meat at 7°C (4). 
 
Other uncured meats. Experiments with raw lamb pieces and mince demonstrated that 
listerial growth at 5°C was suppressed by an atmosphere of 100% CO2 but not by 
atmospheres of 50% CO2 : 50% nitrogen or 80% oxygen : 20% CO2. Vacuum packaging 
was effective in preventing growth of listeriae in lamb mince but not in pieces of lamb 
(31). An atmosphere of 80% oxygen : 20% CO2 was insufficient to prevent the growth of 
L. monocytogenes in lamb meat juice at 4°C (9). 
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USE OF HIGH PRESSURE TO CONTROL LISTERIA  IN MEAT 

High hydrostatic pressure causes widespread damage to cells with adverse effects on 
membranes, enzymes and other structures and molecules (7). Listeria monocytogenes is 
sensitive to high pressure treatments of 400-500 MPa but like other Gram positive 
organisms (such as Staphylococcus aureus) is one of the more resistant species of 
bacteria. Some strain variation in sensitivity to pressure is evident at lower temperatures 
(25°C) but largely disappears at 50°C (2). Bacterial spores are very barotolerant, 
requiring pressures as high as 1000 MPa to destroy them (5,13). 
 
 With current interest in minimally processed foods, high pressure treatment has 
become a more attractive technique because of its minimal effect on the characteristics of 
the final product. The effects of high pressure are instantaneously and uniformly 
transmitted throughout foods regardless of their geometry or size. Although high pressure 
destroys living cells, it does not degrade small molecules like vitamins and flavors and 
(under the conditions tested) has minimal effects on the sensory quality of meats (3,8). 
One disadvantage is the difficulty in completely sterilizing foods; pressure destruction 
curves usually demonstrate some tailing and damaged but viable cells may recover and 
start growing during storage (10,13,16). Nevertheless, several pressure-treated foods are 
currently being marketed including fruit juices and jams and raw squid. 
 
 According to experiments with L. monocytogenes and L. innocua in laboratory 
media, several factors affect the lethality of a given level of high pressure. Modest 
increases in temperature (from 25 to 50°C) decreased D values from 50.8 to 22.4 min at 
137.9 MPa and from 14.3 to 1.3 min at 344.7 MPa (1,2). Therefore, a 7 log kill could be 
achieved by exposure to 345 MPa pressure for approximately 9 minutes at 50°C. 
Increased acidity also enhances the effect of pressure. At 45°C and 252 MPa for 30 min, 
an 8 log kill of L. monocytogenes occurred at pH 4.0 and only a 2 log kill at pH 6.0 (14). 
Addition of the bacteriocin, pediocin AcH, also increases the effectiveness of high 
pressure: an 8 log reduction in L. monocytogenes cells was achieved in only 5 min at 345 
MPa in the presence of pediocin (6). Compounds similar to those in foods (bovine serum 
albumin, glucose, and olive oil) exert a protective effect on L. monocytogenes as 
indicated by larger D values (11). 
 
 Experiments with minced beef, chicken, and pork and with pork chops inoculated 
with L. monocytogenes or other bacteria have confirmed the increased lethality caused by 
a moderate rise in temperature (4,8,10,12) and the presence of bacteriocins (15,17). 
Generally, somewhat higher pressures (400-500 MPa) were required to achieve a useful 
kill rate in a reasonable length of time in meat as compared to laboratory media. Some 
representative D values are presented in the table below. 
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D values (min) in meat treated with high pressure 
 

Bacteria* Pressure Temp. 
(°C) Meat D value Ref.

# 

L. monocytogenes 414 MPa 25 ground pork 4.17 8 
L. monocytogenes 414 MPa 50 ground pork 0.63 8 
L. monocytogenes 400 MPa 4 pork chop 3.52 9 
L. monocytogenes 414 MPa 25 pork chop 2.17 3 
S. typhimurium 414 MPa 25 pork chop 1.48 3 
L. monocytogenes 375 MPa 18 raw chicken 5.0 12 
L. monocytogenes 375 MPa 18 cooked chicken 9.2 12 
L. monocytogenes 375 MPa 18 raw minced beef 4.9 12 
L. monocytogenes 375 MPa 18 cooked minced beef 9.4 12 
L. innocua 330 MPa 20 ground beef 6.5 4 

*L. = Listeria; S. = Salmonella 
 
 
It should be emphasized that effectiveness of high pressure treatments depend on temperature, 

length of exposure, and pressure intensity as well as the strain of Listeria used and various 
ingredients in different foods.  
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USE OF PULSED ELECTRIC FIELDS AND ELECTROLYZED OXIDIZING 
WATER TO CONTROL LISTERIA 

Pulsed electric field (PEF) pasteurization is a non-thermal process which destroys contaminating bacteria 
by a short bursts (< 1 sec) of high voltage. Exposure to PEF destabilizes cell membranes and with sufficient 
intensity and duration of treatment, membranes are irreversibly damaged, important cellular compounds 
leak out, and cells die (2,6). At lower PEF doses, these effects on cell membranes have been exploited by 
genetic engineers to induce hybridization of cells and introduction of DNA fragments into cells (2).  
 

Bacterial spores, Gram positive cells (including L. monocytogenes), and cells in stationary phase 
of growth are more resistant to the effects of PEF (1). For L. monocytogenes suspended in milk, a 
continuous flow PEF system resulted in a 3 log reduction in bacterial numbers at 25°C and a 4 log decrease 
at 50°C (5). A model of microbial survival after exposure to PEF has been developed (3). 

 
As yet this new technology has been applied primarily to liquids such as juices, milk, yogurt, 

beaten eggs, sauces, and soups (4). A PEF system has also been used to destroy E. coli in a homogeneous 
semisolid medium (potato dextrose agar) (8). Pumpable food pastes such as vegetable or fruit purées and 
minced meat are also possible candidates for this type of pasteurization (1). Bacteria in dry powders (flour, 
spices), however, appear to be less susceptible to PEF compared to those in liquids (2). Further research is 
needed to determine the potential for use of PEF for the pasteurization of viscous and particulate foods. 

 
Electrolyzed oxidizing water (EO water) is acidic water (≤ pH 2.7) collected from the anode 

during electrolysis of deionized water containing a low concentration of NaCl. Tests demonstrated that a 2 
min exposure of L. monocytogenes to EO water at 35°C resulted in ≥ 7 log kill (7). This process is still in 
early developmental stages but may have future applications in food processing. 

 
An excellent review of the methods of PEF and its prospects for use in food processing is 

presented by Barsotti and Cheftel (1). 
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USE OF ULTRAVIOLET LIGHT TO CONTROL LISTERIA  IN MEAT 

Although the bactericidal effects of ultraviolet light have long been utilized to control 
microbial contamination in some medical and food industry areas, it is only recently that 
techniques using UV to reduce the microbial load on foods, such as the surfaces of meat, 
have been developed. Since UV light cannot penetrate into foods, only microbes on an 
exposed surface are susceptible to its effects. Bacteria on a smooth surface such as agar 
plates in laboratories or flat plate beef absorb more UV light than bacteria on a rough 
surface such as some cuts of beef, pork, or chicken skin (3,5,6). Therefore, the UV 
exposure required for effective killing of bacteria on meat will most likely exceed that 
required for killing cells on laboratory media. 

 
Studies have shown that UV exposure does not have a deleterious effect on the 

color of meat nor does it cause oxidative rancidity (3,5). This is because UV light does 
not induce production of oxidizing free radicals. Rather, the toxicity of UV light is 
primarily due to the formation of thymine dimers which disrupt the structure and 
functioning of DNA in bacterial cells.  
 

Experiments with Listeria monocytogenes demonstrated that cells in a moist 
environment were killed more easily than those in a dry film or crust (7). In addition, 
shorter wavelengths (254 nm) were more effective than longer wavelengths (365 nm) of 
UV light (7). In the presence of psoralen compounds (from parsley, limes, celery, etc.), 
longer wavelengths of UV can kill L. monocytogenes and other bacteria (4). 
 

A recent innovation which greatly increases the peak power in the UV light 
source is the pulse power energization technique (PPET). PPET light sources operating a 
1 pulse/second kill L. monocytogenes on an agar surface much faster than a continuous 
light source and can reduce cell populations by 6 logs in a 512 μs (1). PPET sources can 
be developed to operate at 100-1000 pulses/sec and these high energy sources may be 
practical for disinfecting meat surfaces. 
 

A comparison of susceptibility of foodborne pathogens (grown on agar plates) 
revealed that L. monocytogenes was the most resistant to UV light (2): L. 
monocytogenes> Staphylococcus aureus≥ Salmonella enteritidis> E. coli> Bacillus 
cereus. 
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USE OF ULTRASOUND TO CONTROL LISTERIA  IN MEAT 

The lethal effects of ultrasound have been known since sonar was developed to detect 
submarines and nearby fish were killed. Ultrasound kills by disrupting cell membranes 
apparently as a result of the formation and subsequent implosion of small bubbles 
(cavitation). Heat and some chemicals may enhance the lethal effects of ultrasound.  

 
Currently, ultrasound is used in food processing for emulsification, accelerating 

freezing and cleaning (1). Some recent investigations have focussed on the possible uses 
of ultrasound for the destruction of foodborne pathogens. Because viscous liquids and 
solids impede the propagation of ultrasound waves, this technique is potentially most 
useful for sterilization of liquids, such as milk and juices. At some future time, 
ultrasound, in combination with other preservation methods, may be useful in surface 
sterilization of other foods. Therefore, some recent research papers describing the effects 
of combinations of ultrasound and high pressure and/or heat on L. monocytogenes in 
liquids have been listed below (2,3,4). 
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