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Introduction 
 

Clostridium difficile was first described as part of the normal microbiota in stool samples 
from healthy infants in 1935 (59) and is still detected in significant numbers of healthy 
asymptomatic infants (143). Later, it was identified as a pathogen  associated with 
pseudomembranous colitis and occasionally with wound and lung infections. (12;96;153;153) 
Now it has become the most common cause of diarrhea in hospitals and long term care facilities 
causing billions of dollars in excess costs. (43) C. difficile contributes to the death of an 
estimated 14,000 people annually in the U.S. and over 90% of the fatalities are >65 years of age. 
(105) The elderly and those being treated with antibiotics to control other infections are most 
susceptible to C. difficile. Broad spectrum antibiotics destroy much of the normal intestinal 
microbiota allowing some resistant bacteria (such as C. difficile), that are normally not very 
competitive in this environment, to thrive. 

Although most cases of C. difficile infection (CDI) occur in patients in health care 
facilities, there has been a recent increase in community-acquired infections. C. difficile spores 
have been detected in meat, seafood, and some vegetables indicating a potential for foodborne 
transmission.  C. botulinum and C. perfringens  have  been food safety concerns for decades 
because they produce potent toxins and their spores survive desiccation, many thermal 
treatments, and other preservation methods. Other clostridial species are known spoilage 
organisms. As yet, there has been no definitive proof that humans acquire C. difficile from 
contaminated food. However, since C. difficile is present in livestock and its spores survive 
ordinary cooking temperatures and some food processing conditions, foodborne transmission 
should be considered a possibility. This white paper will provide an overview of the association 
between C. difficile and human disease and summarize currently available information from the 
scientific literature and government reports on the presence of C. difficile in foods and in food-
producing and companion animals. Epidemiology and characteristics of toxigenic strains 
associated with community and hospital associated outbreaks will be described. 

 
 

Clostridium difficile – biology and pathogenesis 
  
            Biology 

As with other clostridia, C. difficile is a Gram positive, spore-forming, obligate anaerobe. 
It grows more slowly than other clostridia and this makes it more difficult to isolate because it is 
often overgrown by other bacteria in mixed cultures. Sequencing of the genome of a virulent 
epidemic strain revealed that C. difficile shares only about 15% of its coding sequences with C. 
botulinum and C. tetani. About 11% of its genome consists of mobile genetic elements, some of 
which contain antibiotic-resistance genes. These mobile elements include transposons and 
prophages which can be passed horizontally from one C. difficile cell to another and have likely 
played an important role in the rapid evolution of C. difficile in the past decade. Some prophages 
are induced during infection and can be isolated as free viral particles from fecal samples. (108)  

C. difficile has numerous adaptations allowing it to grow and survive in the mammalian 
intestine including the ability to tolerate bile acids and to degrade ethanolamine, an important 
compound providing carbon and nitrogen for growth. C. difficile can synthesize and tolerate high 
levels of a bacteriostatic compound,  p-cresol (which smells like horse manure). This compound 
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may enhance its competitiveness against other intestinal microbes. (27) A dog has been trained 
to detect the odor of C. difficile and can identify patients with CDI. (21) 
 
            Virulence  

 C. difficile  produces two major toxins, TcdA and TcdB, that affect normal physiological 
reactions in target intestinal cells resulting in colitis and C. difficile associated diarrhea (CDAD). 
(177) These toxins are related to other large clostridial toxins that are produced by C. novyi and 
C. sordelii. The toxins inactivate small GTPase enzymes in cells and are synthesized primarily 
during late log and early stationary phases of growth. Some data demonstrate that TcdA levels 
correlate well with disease symptoms and antibodies against TcdA protect against disease. The 
role of TcdB has not been as well delineated.  Another toxin, CDT, which is a binary toxin, is 
produced by some C. difficile strains but its role in pathogenesis is not well understood. In one 
study involving 265 patients, those infected with strains producing the binary toxin had a higher 
case-fatality rate than those infected with strains not producing this toxin. (7) Further details on 
the actions of these toxins were discussed in these reviews. (144;177) 

A hypervirulent, epidemic strain of C. difficile emerged in the early 2000s in North 
America, causing severe illness with high fatality rates. It belongs to PCR ribotype O27, North 
American pulsotype 1 (NAP1), and is of toxinotype III. This strain is resistant to  
fluoroquinolines, produces the binary toxin, has an 18 bp deletion in the toxin regulator gene 
(tcdC), and produces higher levels of toxins and spores than other strains. (46;104;118;187) The 
tcdC gene is thought to be a negative regulator of toxin production although evidence indicates 
that the regulatory system is complex involving several factors. (29)  

By 2005, this strain had spread to Europe, also causing large, severe outbreaks of CDI. 
(31) Several large, multi-hospital outbreaks occurred in the U.S. (81) and Europe (2;19) Then, in 
2012, there were reports of O27 isolates from Latin America. (67;129) Ribotype 027 continues to 
evolve with some new strains displaying novel characteristics. (171) 

Genome analyses of 151 strains of BI/NAP1/027 isolated primarily from hospital patients 
(1994-2010) have revealed the evolution of two distinct lineages of the hypervirulent epidemic 
strain. One lineage apparently originated in northeastern US with the earliest isolate detected in 
Pittsburgh in 2001 and the other also originated in North America (Canada or the U.S.) and was 
first associated with an outbreak in Montreal in 2003. The two consistent genetic differences 
between these epidemic strains and related non-epidemic precursor 027 strains were the 
acquisition of a mutation encoding fluoroquinoline resistance and of a transposon (mobile 
genetic element) containing genes for DNA- binding protein(s), regulators of RNA synthesis, 
and a transport system. These changes apparently improved the fitness of these strains allowing 
them to spread rapidly throughout North America and to Europe and Australia. (64) 

Another hypervirulent strain, O78, was described in 2008 in Europe as the cause of 
severe infections. This strain has similar virulence characteristics to the O27 strain but its 
deletion in the toxin regulator gene is larger. O78 appears to cause more community associated 
cases of CDI and affects a younger population than O27. This strain is similar  to some C. 
difficile isolates from swine. (55) Strain O78 has also spread internationally. 

Several other hypervirulent C. difficile isolates with increased sporulation and toxin 
production have been described. (109) DNA markers for C. difficile strains associated with 
severe disease were identified after a comparative genome analysis of 14 isolates. (48) 
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            Antibiotic Resistance 
Early clinical studies of C. difficile in the 1970s indicated these bacteria were resistant to 

some antibiotics, most notably, clindamycin. Later, cephalosporin use became a prominent risk 
factor for CDI and more recently, important C. difficile strains have exhibited resistance to 
fluoroquinolines. (11) Examination of the genomes of  many C. difficile isolates has 
demonstrated the presence of a wide range of mobile elements encoding resistance to many 
antibiotics including erythromycin, chloramphenicol, tetracycline, and aminoglycosides. 
Fluoroquinolines were one of the most commonly prescribed classes of antibiotics in the late 
1990s in North America and this apparently exerted the selective pressure for the evolution of  
the virulent 027 ribotype strains in hospital settings. (64)  

Many strains have acquired multiple transposons encoding resistance to different 
antibiotics and are now classified as multi-resistant strains. Examination of 316 C. difficile 
isolates from North America indicated that 41.5% were resistant to clindamycin, 38% to 
moxifloxacin, and 7.9% to rifampin. Resistance to all three antibiotics was present in 27.5% of 
ribotype 027 isolates but was rare in other ribotypes. (163) Among 316 C. difficile isolates from 
European patients, 48% were resistant to at least 1 of 8 antibiotics tested and 55% of the resistant 
strains were multi-resistant tolerating 3 or more antibiotics. Mechanisms of resistance were 
described and the evolution of new resistance patterns was discussed.  (158)   

 
            Infections and carriage in humans  

Incidence of asymptomatic carriage of C. difficile in the healthy, general population has 
been estimated at 3%. However, some populations have a higher rate of carriage. A survey of 
100 residents of a home for the elderly (median age 83) found that 10% were asymptomatic 
carriers of C. difficile. (145) A survey of 1234  Japanese adults with no history of antibiotic use 
during the previous 4 weeks found that 7.6% were asymptomatic carriers of C. difficile. (83) 
After treatment and resolution of symptoms, many CDI cases continue to shed C. difficile spores 
for as long as 4 weeks. (151) These spores are very resistant to sanitizers and environmental 
stresses and asymptomatic carriers may be sources of hospital- and community-acquired 
infections.  

 Early outbreaks of C. difficile associated diarrhea (CDAD) or C. difficile infection (CDI) 
occurred in hospitals and epidemiological studies implicated the long-term use of antibiotics in 
the development of this disease. C. difficile is now the most common cause of diarrhea in 
hospitals and long term care facilities, particularly afflicting those being treated with antibiotics, 
such as cephalosporins and fluoroquinolines, to control other infections. Antibiotic treatment can 
destroy much of the normal intestinal flora allowing some resistant bacteria that are normally not 
very competitive (such as some strains of C. difficile) to thrive. Data from a 2010 survey of 89 
German hospitals revealed that the incidence of nosocomial C. difficile infection was twice that 
of nosocomial MRSA infection. (113) 

Recurrent CDI occurs frequently, generally affecting more than a third of primary cases. 
An examination of the strains involved in  the recurrent infections of 82 persons found that in 51 
people, CDI symptoms occurring after an apparent cure were caused by the same C. difficile 
strain, indicating a relapse. In the other patients, a different C. difficile strain was detected 
indicating that a new infection occurred. Infection with 027 was a significant risk for relapse. 
(102) Several papers from a 2012 symposium discussed different aspects of the problem of 
recurrent C. difficile infections. (47) 
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 In the past 8 years, there has also been an increasing number of cases of C. difficile 
infection occurring outside of hospitals, among younger, healthy persons with no recent history 
of antibiotic use. (144;50) 
 
            Disease and Carriage in Animals  

C. difficile infects animals as well as humans and differences and similarities in these 
infections were recently reviewed. (85) Predominant ribotypes of C. difficile vary with animal 
species and geographic location but there is an overlap between animal and human strains. 
(77;85) C. difficile causes diarrhea in piglets (85;154) and horses (15;165). Some isolates from 
diarrheal pigs and calves are indistinguishable from an important human pathogenic strain, 
ribotype O78. (41;55;183) Dogs and cats with diarrhea may also harbor C. difficile. (32;89) 
Epidemiology, treatment, and control of enteropathogenic bacteria in dogs and cats were recently 
reviewed. (101) An outbreak of enteritis caused by C. difficile caused the death of two Asian 
elephants in a zoo in Denmark. It was suggested that the feeding of large quantities of broccoli in 
the days just prior to illness caused an overgrowth of toxigenic C. difficile because broccoli can 
inhibit the growth of  some intestinal microbiota. (20) 

Both companion animals and livestock can be asymptomatic carriers of C. difficile. See 
Table 1 for information on surveys of  animals that reported the presence of C. difficile.  In  84 
Canadian households with healthy dogs and/or cats, C. difficile was detected in 10% of the dogs 
and 21% of cats. (179) Animals at shelters also harbor C. difficile, with 5.5% of dogs and 3.7% 
of cats at 10 shelters testing positive. (148) This bacterium has been isolated from healthy horses 
and a year long study of 25 healthy adults revealed that C. difficile was shed transiently. (150) 
Data indicate that C. difficile is not usually transmitted directly from animal to animal or 
vertically from mother to offspring.  (69;136) 

Younger foals are more often carriers of C. difficile than older foals and adult horses. (15) 
In fact, surveys of healthy farm animals generally show that younger animals, including piglets 
(116;160;183), hens (185), and calves (34), are more frequently carriers of C. difficile than older 
animals. Newborn piglets delivered by caesarian section test negative for C. difficile but within 
48 hours all 71 piglets delivered normally and monitored at a Dutch farm became positive for C. 
difficile. C difficile was present on teats of sows, in the air, and on other environmental samples. 
(69)  C. difficile carriage generally declines with age as illustrated by a longitudinal study in 
piglets in Ontario which found a prevalence of 74% at 2 days of age, 56% on day 7, 40% on day 
30, 23% on day 44 and 3.7% on day 62. (183) 

Presence of C. difficile in animals used for food is one indication of the potential for 
transfer of this pathogen to meat during slaughter and processing of animals. Some recent studies 
report the presence of this bacterium in 3-5% of feedlot cattle in Canada (33), 6.6% of ruminants 
(cattle and goats) on 30 Swiss farms (142), 8.6% of Dutch pigs at slaughter (86), 4.9% of turkeys 
in Italy (146), 2.3% of broiler chickens in Texas (61), and white-tail deer raised on 36.7% of 
farms tested in Ohio (51). C. difficile has also been detected in fecal samples from sheep in the 
Netherlands. (89) (See Table 1 for more survey results.)  

Prevalence of C. difficile in livestock may be affected by conditions at different farms. 
However, several farm specific factors, (conventional vs. organic, more or less than 1000 pigs, 
finisher farm vs. farrow-to-finish, presence or absence of other livestock) did not appear to 
significantly affect prevalence. (86) Although one study reported that piglets on an antibiotic free 
farm had a lower prevalence of C. difficile than those on a conventional farm, antibiotic resistant 
bacteria were present in animals on both types of farms. (160)     
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 Epidemiology of C. difficile 
 

Incidence of infection worldwide 
More than 250,000 hospitalizations each year in the U.S. are estimated to be associated 

with C. difficile infection and the economic burden of this illness is close to or may even exceed 
$1 billion annually. (43;106) A high incidence of CDI in hospitals significantly increases costs 
due to longer hospitalization, rehospitalization, more laboratory tests, and more medications. In 
uncomplicated cases, this may entail an extra $5000 per patient. But for special populations, for 
example patients being treated in intensive care units for other illnesses, the increased cost may 
be as much as $90,000 in 2008 dollars. (53) The economic burden of CDI is not limited to 
hospitals. Kaiser Permanente Colorado and NorthWest tracked CDI cases for 3 years and 
reported that more than half were identified in outpatients, with resulting costs to clinics and to 
patients who must stay home from work. (93) 

During the past 15 years the incidence of CDI in acute care hospitals in the U.S.  has 
increased from 30-40/100,000 to >84/100,000. Data reported by CDC indicate that mortality 
from CDI has increased steadily from 793 deaths in 1999 to 7,476 deaths in 2008, dropping 
slightly to 7,284 in 2010. Approximately 91% of these deaths occurred in people aged 65 and 
older. (115) The increasing severity of illness correlates with the emergence of hypervirulent 
strains (ribotype O27/NAP1/toxinotype III and ribotype O78 toxinotype V) detected first in the 
U.S. and Canada in the early 2000s (87;114), then in Europe in 2005, and in Asia, Central 
America, and Australia in 2008-2010. (31)  

Similar recent increases in CDI have also been reported in Canada and Europe. Estimated 
burden of CDI in Europe is about 5 episodes per 10,000 days of hospital stay. However, this 
disease is believed to be significantly underreported because clinicians often fail to order tests for 
C. difficile in cases of unexplained diarrhea or else laboratories may use diagnostic tests with low 
sensitivity. Some CDI cases are missed because symptoms develop after the patient has been 
discharged from the hospital. Estimates for annual costs for managing CDI in Europe are about 
€3000 million. (24) 

CDI has become a problem in hospitals and communities in other countries and issues 
related to CDI in Latin America  (10) and in Asia (46) were recently reviewed. 

Hypervirulent strains produce many more spores and higher levels of toxins than less 
virulent strains. Infectious dose of C. difficile required to cause illness depends on the virulence 
characteristics of a strain and the susceptibility of the host. There are no data for humans on  
infectious dose but an experiment with mice demonstrated that exposure to <7 spores/cm2 of 
cage space for 1 hour, followed by a dose of clindamycin was sufficient to reproducibly cause 
illness in healthy animals. While it is not certain how this relates to human infections, it indicates 
that the infectious dose may be quite low, particularly in those being treated with antibiotics. (97)  

            
 Healthcare–associated (HA) vs. community–associated (CA) infections 

Traditionally, CDI has been associated with patients who were given broad spectrum 
antibiotics in hospitals. However, during the past 10-15 years, the epidemiology of C. difficile 
has been changing as the frequency and severity of CDI in humans has increased. Recent reviews 
discuss the possible roles of the emergence of hypervirulent strains, ageing populations, effects 
of newer antibiotics, and increased exposure to this pathogen outside of healthcare facilities. 
(42;50)  
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Recent trends in the epidemiology of CDI are reminiscent of changes observed in the 
epidemiology of MRSA (methicillin-resistant Staphylococcus aureus) infections. Originally both 
pathogens primarily affected patients in hospitals and other health care facilities, causing more 
severe illness in the elderly, the immunocompromised, and those with other significant health 
problems. Prior treatment with antibiotics was often identified as a risk factor.  In recent years, 
both pathogens have been causing increasing numbers of cases outside of hospitals, among 
younger, healthy persons with no recent history of antibiotic use. The epidemiology and 
transmission of  these community-acquired infections are not well understood. Although usage 
of antibiotics and gastric acid suppressants appear to be related to community-associated CDI 
(CA-CDI), 27% of CA-CDI cases in one U.S. study did not receive antibiotics during the 6 
months prior to illness  and 17% did not have any risk factors usually associated with CDI. (92) 

Increases in CA-CDI have occurred in Europe as well as in the U.S. Reports from CDC 
in 2005 first described severe infections in 4 states in persons considered at low risk for infection. 
(30) Surveillance in CT in 2006 found that about 25% of CDI cases had no established risk 
factors. (130) Records on CDI cases occurring during about 15 years in Olmstead Co., MN were 
examined to detect differences between CA and HA cases. Incidence of both types of cases 
increased significantly during this time. CA-CDI cases accounted for about 41% of the total and 
were younger, more likely to be female and had less severe infections and fewer comorbid 
conditions. (88)  

Recent data from the UK indicates that CDI rates overall have decreased since about 
2006-2007, but the proportion of cases acquired in the community has increased. (78)An 
intensive 3-month study in the Netherlands in 2007-2008 of community onset CDI found that 
26% of patients had not been using antibiotics during 6 months previous to infection nor had 
they been admitted to a healthcare institution within the previous year. Thirteen different PCR 
ribotypes were detected and some of them had never been detected in hospital outbreaks. (14) 

Community-associated infections are defined as those occurring in patients, without 
hospitalization in the past 3 months and diagnosed in an outpatient clinic or diagnosed within 48 
hours of admission to the hospital. If symptoms develop after 48 hours, then the infection was 
probably acquired in the hospital. Some apparent CA cases at first appear not to have traditional 
risk factors for infection but on further investigation may have been taking antibiotics or have 
had close contact with a hospitalized patient. However, for others there are no recognized 
sources of infection or obvious risk factors. Although C. difficile is present in many wild and 
domestic animals, in water and soil samples and in some foods, there is as yet no direct evidence 
for the transmission  of this pathogen from the environment, foods, or animals to humans. (66) 
More rigorous identification of C. difficile strains from different sources is needed to determine 
whether humans acquire infections from food or other animals. A recent analysis of isolates from 
community-associated infections found that they were not related to isolates from food and food 
animals. (103) 
 
            Predisposing (Risk) factors for infection 
 It has long been recognized that increased age and the use of certain antibiotics are risk 
factors for CDI. Although nearly all antibiotics have been associated with onset of CDI, exposure 
to clindamycin, cephalosporins, and fluoroquinolines occurs more frequently prior to onset of 
symptoms. These broad-spectrum antibiotics alter the normal composition of the intestinal 
microbiota while certain C. difficile strains are unaffected by them. For example, the prominent 
North American epidemic strain, BI/NAP1, is highly resistant to fluoroquinolines and 
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clindamycin. (123) A meta-analysis of 5 studies comparing infection with BI/NAP1/027 to 
infection with other C. difficile ribotypes found that age >65 years and prior use of 
fluoroquinolines were associated with a greater risk for infection with this ribotype. (172) 
 Antibiotics increase susceptibility to CDI not only when they are being consumed but 
also for an extended period afterwards. A multi-center case-control study in the Netherlands 
found that patients were at a 7-10 fold increased risk of CDI for a month after cessation of 
antibiotic therapy. (65) Experimental studies in mice revealed that a single dose of clindamycin 
severely reduced the diversity of intestinal microbiota for at least 28 days, allowing the 
expansion of some microbial species that were previously minor constituents of the microbiota. 
Inoculation of clindamycin-treated mice with C. difficile rapidly provoked diarrhea and colitis 
and mice remained more susceptible to CDI for at least 10 days after administration of the drug. 
(25) Antibiotics caused changes in the relative numbers of different microbes in the intestine and 
the number of  different genera of bacteria, thereby reducing diversity of the intestinal 
microbiota. Fecal Bifidobacterium spp. numbers were greatly reduced, particularly by antibiotics 
that inhibit nucleic acid synthesis (ciprofloxacin, trimethoprim, moxifloxacin). (79;119) Similar 
effects on intestinal microbiota likely occur in humans treated with antibiotics and may explain 
the extended period of susceptibility to and alterations in the composition of the intestinal 
microbiota are associated with CDI. (100;131)  

Age-standardized incidence rates of CDI in a population in Iceland were ≤25/100,000 for 
those less than 60 years of age. But incidence increased dramatically for those aged 60-79 
(128/100,000) and those older than 79 years (319/100,000). (173) However, not all older people 
and those taking long courses of antibiotics develop CDI. With advent of some new, more 
virulent strains of C. difficile, there has been an increase in the rate of CDI in younger people 
traditionally thought to be at low risk. Recent studies suggest that other medications and life style 
factors may also play in susceptibility to CDI. 
 Use of acid suppressant medications, either alone or in combination with antibiotics, has 
been proposed as a risk factor that may explain some community- and hospital-associated cases 
of CDI. (57) C. difficile spores can survive normal gastric conditions but vegetative cells are 
killed by acid. But vegetative cells can tolerate conditions in the stomach if pH >5. (80) A 
systematic review of 27 studies found that proton pump inhibitors (PPIs)  increased gastric pH 
and increased risk for infections with Salmonella, Campylobacter, and C. difficile. (16) A meta-
analysis of 23 studies involving nearly 300,000 patients concluded that there was sufficient 
evidence that PPI intake increased incidence of CDI. Overall the increased risk was 1.69; for the 
17 cohort studies, risk was 2.31 while for the 6 case-control studies, risk was 1.48. (76) Another 
meta-analysis of 39 studies involving 313,000 patients, found an increased risk of 1.74 
associated with use of PPIs and concluded that there was a probable association between PPIs 
and development of CDI. (94) There was some variability among the various studies included in 
these analyses with regard to the control of other factors that might be associated with CDI and 
this could affect the significance of the results. 
 Data on 16,781 older U. S. individuals (age > 50 years) indicated a correlation between 
smoking and CDI. While the overall incidence of CDI in this group was 220.6/100,000 person-
years, incidence rates for current smokers and never-smokers were 281.6 and 189/100,000 
person-years, respectively. Several hypotheses were suggested to explain this effect of smoking. 
C. difficile may be present in cigarettes. Previous studies have documented the presence of 
Clostridium spp. in a high percentage of cigarettes but whether C. difficile is a frequent 
contaminant is unknown. Smokers may contract more infections and therefore use more 
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antibiotics. Or the gut microbiota of smokers may be different from that of non-smokers and 
more readily permit growth of C. difficile. (141) 
.   
            Potential routes of infection 

Epidemiology and transmission of C. difficile, particularly for community-acquired 
infections, are not completely understood. C. difficile is transmitted basically by the fecal-oral 
route but numerous exposure scenarios are possible. (121) High concentrations of spores (104 to 
107 spores/g.) are present in feces of people and animals with active CDI. Prior to treatment 
about 90% of samples from the skin of hospitalized patients with CDI and of environmental 
samples in their rooms tested positive for C. difficile. Treatment caused resolution of diarrhea in 
an average of 4.2 days. Yet some patients and their environments still contained spores 6 weeks 
after treatment. (151) 

   
             Person to Person Contact 

C. difficile is commonly present on the skin of patients with CDI, with highest counts 
generally present on the abdomen and lowest counts on the chest. Spores were readily transferred 
to moist gloved hands touching the skin of patients. It is believed that the hands of healthcare 
workers are an important means of transporting nosocomial pathogens throughout hospitals and 
other health facilities. (56) However, a study of the transmission of C. difficile in hospital wards 
at a large U.S. hospital indicated that transmission from patients with CDI was not sufficient to 
sustain transmission to other residents of the ward, Rather, admission of new colonized patients 
was an important factor in sustaining transmission. (95) 

Asymptomatic carriers may be an important source of C. difficile in the community and 
in long term care facilities. More than half of 68 asymptomatic residents at one facility were 
found to be carriers and C. difficile was present on their skin and in their environment. Spores on 
the skin were easily transferred to the hands of others suggesting that personnel attending these 
residents can spread C. difficile to other residents and areas of the facility. (132) 

Persons working in environments where they are routinely exposed to C. difficile, such as 
nurses, day care workers, some farm workers, and some persons working in veterinary clinics, 
may transport spores on their clothing from the workplace into their homes and the community. 
(121) Infants at day nurseries  are often colonized with C. difficile and sometime secrete spores 
for several months. (143) Some data from Canada indicated that direct transmission of C. 
difficile from CDI cases to family members was not very common. (126) 

 
Animal  to Person Contact 

Healthy animals of several species carry and intermittently shed C. difficile suggesting 
the possibility that humans may be infected by direct contact with companion animals or 
livestock in occupational settings or at fairs and petting zoos. A Canadian survey detected C. 
difficile in 10% of dogs. However, ribotype analysis of canine and home environmental strains 
indicated that dogs were not a significant source of household contamination. In fact, some dogs 
may acquire C. difficile from humans as living with an immunocompromised individual was 
associated with colonization in dogs. (179) Therapy dogs that visit human healthcare facilities 
may acquire C. difficile from contact with patients or contaminated floors. (98) If this is a 
frequent occurrence, the these dogs may be a mechanism for transporting C. difficile within these 
facilities and possibly exposing other patients/residents to this pathogen.   
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An examination of fecal samples from goats, sheep, calves, pigs, ponies, a rabbit, and a 
donkey at 4 Dutch petting zoos revealed the presence of C. difficile in only one pig. This 
suggests that there is not a great risk of infection to visitors at the zoos although C. difficile 
spores could contaminate and remain in these environments for months. (71) Another study of 
158 4-H members and 203 of their animals found C. difficile in 13 people but not in any of their 
animals. C. difficile was isolated from 2 horses and 1 pig but not from their human caretakers. 
This is further evidence that fair visitors are not at increased risk for acquisition of C. difficile. 
(107)  

A study at a closed swine operating system in Texas investigated C. difficile isolates from 
pigs, from workers who had direct contact with pigs and from workers who were not directly 
exposed to pigs. No difference in prevalence of C. difficile carriage was observed in the two 
groups of workers, suggesting that direct exposure to pigs was not an important route of 
transmission. However, C. difficile isolates from pigs and workers were very similar indicating 
that there may have been airborne transmission of spores leading to general environmental 
contamination in the facility. If spores were not transmitted from one species to another, then 
both species may have been exposed to some other common source of C. difficile. (117)  

Animals may be vectors for transporting C. difficile around farms. House mice, house 
sparrows and some insects (drain flies, lesser house flies and mealworms) on a pig farm in the 
Netherlands tested positive for C. difficile as did some samples of bird droppings. Piglets acquire 
C. difficile infections from the environment and these pest animals may increase the range of 
environmental sources for infection. (26)   

               
Airborne Transmission 

In spite of intensive cleaning and sanitation efforts, many surfaces in health care facilities 
test positive for C. difficile. A short pilot study examining the possible role of aerial transmission 
of this bacterium detected C. difficile spores at concentrations of 53-426 cfu/m3 air during 2 days 
of sampling. No spores were detected during another 2 days indicating that aerial transmission 
may be sporadic. (133) 

Air sampling (for 1 hour) near 50 patients with CDI revealed the presence of C. difficile  
around 6 patients. However, when sampling time was extended to 10 hours over 2 days, air 
around 7 of 10 patients tested positive. Contamination was more frequently detected during times 
of increased activity, for example during the busy lunch hour. Molecular characterization of 
isolates confirmed a link between airborne dispersal and environmental contamination. (17) 

 When a fecal suspension containing 107 spores/ml was flushed in lidless toilets of the 
type often used in health care facilities, C. difficile spores were detected in air samples up to 25 
cm above the toilet seat. Further, a range of 15-47 droplets were emitted during flushing. These 
airborne droplets and spores could settle and remain on surfaces in the surrounding area. (18) 

Spores are also present in the air around farrowing pens at farms with animals carrying C. 
difficile. Peak spore counts were detected around the time that farm workers were active in the 
area. Airborne spore dispersal was detected as far as 20 m from the farm.  (84) 

                  
  Contact with Contaminated Equipment and Surfaces  
Infected patients discharge large numbers of C. difficile spores and vegetative cells 

during diarrheal episodes and these spores and cells may be deposited on numerous surfaces in 
the environment. Vegetative cells can survive up to 6 hours on moist surfaces while spores are 
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very resistant to environmental stresses and to some classes of sanitizers and may therefore 
persist for extended periods (up to several months) in the environment. (39;80)   

Spores of toxigenic C. difficile have been detected on surfaces in patients’ rooms, 
portable pieces of equipment, and doctors’ and nurses’ work areas. (44;90;122) Stethoscopes can 
pick up C. difficile from the skin and  transfer the spores to another surface. (170)  Hospital 
curtains can also be contaminated with pathogens and hand imprint cultures demonstrated that 
they could readily transfer to hands touching the curtains. (168) 

           
             Consumption of Contaminated Food or Water 
 Since C. difficile is spread by the fecal-oral route and has been isolated from livestock 
and poultry, there is a potential for foodborne transmission as a route for human infection. Meat 
could be contaminated during slaughter of animals carrying C. difficile and could also be 
contaminated by food handlers who are carriers and do not practice good personal hygiene. 
Surveys in North America and Europe have found low levels of C. difficile in a small percentage 
of retail meat, including beef, veal, chicken, turkey, pork, lamb, and some sausage. Generally, 
the reported prevalence of C. difficile is higher in meat from North America than in meat from 
Europe. C. difficile was also detected in dog food containing raw turkey. (181)  Some salad 
vegetables, root vegetables, and seafood were also found to be contaminated. One report from 
1988 indicated that spores of C. difficile and other clostridia were present in honey. (128)  Table 
2 summarizes results from published studies that detected C. difficile in human foods. Although 
only low levels of spores were detected, some strains of C. difficile in foods are toxigenic and are 
similar to strains isolated from cases of human illness. Other published research reported the 
absence of C. difficile in meats (23;40;68;75;82;99;175), seafood (110), and raw milk (82). 
 Significance of the presence of C. difficile spores in food is unclear at present. There is no 
data on infectious dose and it is likely that this depends on the health of individuals and whether 
they have recently been exposed to broad spectrum antibiotics. Although early descriptions of C. 
difficile indicated that it did not produce lipases and could not digest meat and milk, recent 
preliminary data described growth on media containing meat or fish juice and on ground beef. 
The authors did not report whether toxins were produced during growth. (159) An in vitro study 
indicated that the structures of toxins A and B are partially unfolded at 40-45°C although they 
tended to be more stable at higher pH values. (147) This suggests that the activity of toxins (if 
they were present in foods) would be destroyed by cooking. However, the stability of the toxins 
in the presence of various food constituents has not been determined. If spores are present in 
meat or other foods, they would not be destroyed by ordinary cooking to recommended 
temperatures. (138)  
  
               
 Control and Prevention of CDI 
                    
            Hospital and healthcare programs 

Following some severe outbreaks of CDI in healthcare facilities, comprehensive control 
programs have been instituted at some hospitals to reduce the spread of C. difficile among 
vulnerable patients. According to data collected by CDC during 2010, 52% of 42,157 CDI cases 
treated at hospitals had symptoms at admission. Patients with diarrhea may excrete over a 
million spores per gram of feces and these may contaminate the environment and infect other 
patients. Therefore, early and reliable detection of CDI and isolation of symptomatic patients are 
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important steps in limiting the spread of infection. Attention to handwashing, the use of gloves 
and proper cleaning and sanitation of rooms, instruments and frequently contacted surfaces can 
eliminate or reduce the potential for transmission of C. difficile. Hospitals in three states that 
aggressively implemented these programs saw their CDI rates decline by at least 20%. (105)  

A multipronged infection control program at a Canadian hospital that included 
monitoring and reducing the use of broad-spectrum antibiotics where possible and the hiring of 
infection control practitioners along with increased cleaning and housekeeping and the rapid 
identification and isolation of CDI cases achieved a 61% reduction in CDI cases. (184) A 
significant decrease in CDI was observed in another hospital after implementation of a program 
that reduced use of broad spectrum antibiotics in favor of “low risk” antibiotics. (161) Other 
recent reviews discussed important aspects of antimicrobial stewardship and hospital infection 
control programs. (74;123;176) Cost effectiveness of screening and isolation programs were 
estimated in a simulation model. (13) 

Identification of patients with diarrhea caused by C. difficile rather than by some other 
pathogen can be time consuming because of slow growth on culture plates. Some researchers in 
the Netherlands trained a dog to detect the odor of C. difficile and the dog was able to correctly 
identify 25 of 30 patients with CDI and 265 of 270 control patients without CDI by walking past 
their hospital beds. (21) 

Although public reporting of the quality of care in hospitals is controversial, a study in 
Canada found that mandatory public reporting of hospital-acquired infection rates was associated 
with a 26.7% decrease in CDI. The direct actions within the hospital that effected this change 
were not described but there was apparently an incentive to improve infection control practices. 
(37) Improved education for housekeeping staff and monitoring the effectiveness of cleaning and 
disinfection practices to provide feedback to frontline staff has been found to result in 
significantly fewer isolates of C. difficile from surfaces in health care facilities. (45) 

                  
            Sanitizers and surface treatments 
 Bacterial spores, including those of C. difficile, can survive on dry, inanimate 
environmental surfaces for at least 5 months. (90) But vegetative C. difficile cells die quickly on 
dry surfaces. However, cells may remain viable for up to 6 hours on moist surfaces in rooms 
such as bathrooms and kitchens. (80) Prior to treatment for CDI, patients excrete 10 times as 
many vegetative cells as spores but once antibiotic treatment starts, spores are the primary form 
detected. Numerous surface cleaning and sanitation methods have been devised to kill infectious 
C. difficile on surfaces, as described in these articles. (36;49) 
 Bleach solutions are recommended as effective sanitizers rather than alcohol wipes or 
quaternary ammonium compounds because spores are inactivated more readily by chlorine. 
Some recent studies provided evidence for the efficacy of bleach in reducing CDI. Following a 
new program for thorough cleaning, using dilute bleach, of all surfaces in hospital rooms 
occupied by CDI patients after patients were discharged, resulted in a 48% reduction the average 
number of CDI patients per 1000 patient-days in the hospital as compared to the preintervention 
rates of illness. (58) Germicidal bleach wipes used for daily cleaning on wards with a high rate of 
hospital acquired CDI reduced CDI incidence in the hospital by 85%. (120) However, a chlorine 
dioxide based cleaning system was not effective in reducing contamination of surfaces or CDI 
rates in a hospital trial. (54) 
 Despite its effectiveness, bleach can be irritating and unpleasant to use and corrosive on 
some surfaces and equipment. One alternative, peracetic acid sporicidal wipes, did remove 
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significant numbers of C. difficile spores from surfaces and reduced spore counts on hands of 
health care workers and rates of CDI. (28;91) A series of 32 disinfectants, tested against C. 
difficile spores, varied in their effectiveness with some requiring an hour of contact time before 
significant reductions were observed. Generally, compounds containing chlorine performed the 
best. The presence of other organic matter (dirt) also affected the efficacy of the disinfectants. 
(157) 
 Other proposed disinfectants are gaseous compounds, including steam, hydrogen 
peroxide, chlorine dioxide, and ozone. (38) Use of a portable saturated steam vapor disinfection 
system reduced counts of C. difficile spores dried on a surface to undetectable levels in 5 seconds. 
However, low concentrations of spores were used, so this system requires further testing. (162) 
An accelerated hydrogen peroxide cleaner killed spores in and on toilets used by CDI patients, 
reducing levels to 28% of untreated toilets. (3) Hydrogen peroxide vapor has also been used to 
clean hospital rooms achieving a 6 log reduction in 2-3 hours. (52;63) Another room disinfection 
system, utilizing 80 ppm ozone and 1% hydrogen peroxide achieved 6 log reductions in spores in 
a shorter time of 60-90 minutes. (186) 
 Nonthermal atmospheric gas discharge plasmas can sterilize surfaces without leaving a 
chemical residue behind.  In tests with spores of several Clostridium and Bacillus species, the 
plasma inactivated C. difficile spores with a D value of 2.8 min. Other clostridia were more 
resistant to the plasma. (169)  
         
            Prevention of Animal Disease 
 C. difficile infection can be a significant problem in neonatal swine. Following some 
encouraging results in laboratory animals, an attempt was made to protect piglets from CDI by 
administering a nontoxigenic strain of C. difficile to them either by direct inoculation of each 
piglet or by spraying the perineum and teats of dams with spores of this strain. More piglets were 
weaned from treated litters and their average weaning weight was higher than tat of piglets from 
untreated litters. Analyses of fecal samples from piglets 5 days after birth showed the presence of 
C. difficile toxins in 58.3% of control litters, 44.8% of sprayed litters and 13.8% of litters in 
which piglets received a direct dose of non-toxigenic C. difficile. Further research may determine 
whether this is a practical strategy for protecting piglets. (155) 
                
             Prevention of foodborne intoxication or infection  

Although some preliminary data indicates that C. difficile can grow on media containing 
meat or fish juice and on ground beef (159), this bacterium, like other clostridia, is an anaerobe 
and does not grow in the presence of oxygen. It is not clear whether there are foods that will 
support growth and toxin production by C. difficile or whether the critical issue is simply the 
number of spores deposited on foods at the point of contamination. It appears that the structures 
of toxins A and B are partially unfolded at 40-45°C (although they tended to be more stable at 
higher pH values). (147) This suggests that the activity of toxins (if they were present in foods) 
would be destroyed by cooking. However, the stability of the toxins in the presence of various 
food constituents has not been determined.  If spores are present in meat or other foods, they 
would not be destroyed by ordinary cooking to recommended temperatures. (138)  

Particularly for foods to be served to vulnerable populations in hospitals, nursing homes, 
and elsewhere, efforts should be made to prevent contamination throughout the food production, 
processing and preparation chain.  Procedures used to reduce contamination with other intestinal 
pathogens, for example E. coli and Salmonella, during slaughter and processing of livestock will 
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aid in diminishing C. difficile on carcasses and pieces of meat although spores will survive heat 
and some cleaning/disinfection steps that would inactivate vegetative pathogens. Workers in 
food processing and preparation have been implicated in outbreaks of foodborne disease. They 
may shed bacteria and viruses, even when asymptomatic and several weeks after they have 
recovered from an illness. Improved hygiene precautions, consistently practiced by persons in 
food preparation and processing would significantly improve safety of foods.  (167) 

  
                                                                  
Data gaps and research needed  
 Further information and research is needed to determine whether C. difficile in food 
presents a significant threat to human health.   
 The few studies that have reported concentrations of spores in foods indicate that 

contamination levels are very low. More data is needed on spore levels in different foods. 
 There is not yet any good data on the possible growth and toxin production of C. difficile in 

different foods. Although the presence of C. difficile in many foods may not be a risk for 
illness, there may be certain foods that are more commonly or heavily contaminated with C. 
difficile or environmental conditions that support growth of C. difficile and toxin production as 
there are for C. botulinum and C. perfringens. 

 C. difficile spores are known to survive ordinary cooking temperatures but further information 
is needed on the ability of these spores to survive other processing conditions and 
antimicrobials that may be added to foods. 

 Nor is there enough information on the stability of toxins A and B at different temperatures or 
pH values in foods.  

 More rigorous genotyping methods are needed to determine whether C. difficile strains present 
in animals, food, or environmental samples are the same as those isolated from human CDI 
cases.  

 The infectious dose of C. difficile in healthy persons or in those whose normal microbiota has 
been depleted by antimicrobial use or those with other comorbid conditions is unknown. 

 
Although we know that chlorine-based disinfectants can kill C. difficile spores, hospitals 

and other healthcare facilities continue to experience problems with CDI. More research may be 
needed on other effective disinfectants. Hospitals and other institutions with continuing 
contamination problems may need to devise better organized systems for cleaning and 
disinfection. This may involve: more rapid identification of contaminated areas, prevention of 
contamination of instruments, minimizing production of aerosols containing C. difficile spores, 
and educating and encouraging personnel to adhere to strict infection control procedures.  These 
strategies will also be important for food processors if C. difficile is determined to be a 
foodborne pathogen. 
                         
Summary and Perspective   

During the past 10-15 years, the frequency and severity of CDI in humans has increased. 
While it is still true that the majority of infections occur in hospitals and other healthcare 
facilities, in people over 65 years old, in those taking certain antibiotics such as fluoroquinolines 
and in persons with other serious health issues, an increasing number of younger, healthy and 
non-hospitalized persons have recently developed CDI. The emergence of hypervirulent strains, 
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ageing populations, newer wide-spectrum antibiotics, and increased exposure to C. difficile 
outside of healthcare facilities may all have played a role in this changing epidemiology.   

The normal habitat of C. difficile is the gastrointestinal tract of humans and other animals 
(including livestock and companion animals). As such, large numbers of spores are present in 
feces of infected people and animals as well as of asymptomatic carriers. Therefore, infection of 
new hosts occurs by some version of the fecal-oral route. Although C. difficile has been detected 
in many domestic animals, in water and soil samples and in some foods, there is as yet no direct 
evidence for the transmission  of this pathogen from the environment, foods, or animals to 
humans.  

There are many unanswered questions about the epidemiology of this pathogen and it 
would be wise to monitor ongoing research on this organism to determine whether it poses a risk 
as a foodborne pathogen. 
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    Table 1. Surveys reporting C. difficile in  animals (Unless indicated, animals were healthy.) 
 
 
Animal Number 

tested 
% positive Cd strains Location Year 

reported 
Reference 

Calves 18 22.2 078 Belgium 2012 (134) 
Calves 47 12.7 003, 033, 066 Switzerland 2012 (142) 
Calves, veal 100 6 012, 033 Netherlands 2012 (89) 
Calves, veal 200 28  Pennsylvania 2012 (73) 
Calves, veal 200 61 078, 11 others Canada 2011 (34) 
Calves, veal 71 33.8  Pennsylvania 2010 (72) 
Calves, veal 204 0.49 078 Switzerland 2010 (68) 
Calves, veal 42 9.5 033 Slovenia 2009 (6) 
Calves, veal, diarrheic 
   healthy 

253 
53 

25.3 
12.7 

078, 017, 027, 
5 others 

Southwestern 
U.S. 

2008 (60) 

Calves, veal 56 1.8 066 Slovenia 2008 (127) 
Calves, veal,   diarrheic 
    healthy 

144 
134 

7.6 
14.9 

017,  027, 5 
others 

Canada 2006 (140) 

Cattle, at harvest 202 6.9 078 Belgium 2012 (134) 
Cattle 874 4.1 078 Canada 2012 (33) 
Cattle, dairy 63 1.5 137 Switzerland 2012 (142) 
Cattle, dairy 100 1 012 Netherlands 2012 (89) 
Cattle, at harvest 944 1.8 078, 3 others U.S. 2011 (135) 
Cattle, arrival at feedlot 
  Prior to harvest 

186 
186 

12.9  
 1.2  

078, 1 other Canada 2011 (136) 

Cattle,  Beef 
   Dairy 

2965 
1325 

6.3 
2.4 

 U.S. 2011 (166) 

Cattle, at harvest 67 4.5  Austria 2009 (75) 
Cats 135 3.7 010, 014/020, 

039, 045, SLO 
066 

Germany 2012 (148) 

Cats, diarrheic 115 15.7 014 Netherlands 2012 (89) 
Cats 14 21 001 Canada 2010 (179) 
Cats, hospitalized 42 7.1 11 ribotypes Canada 2008 (32) 
Cats 100 2  U.K. 1996 (1) 
Cats 20 30   1983 (22) 
Chickens 300 2.3 NAP7 Texas 2011 (61) 
Chickens 61 62.3 12 PCR 

ribotypes 
Slovenia 2008 (185) 

Chickens 100 29  Zimbabwe 2008 (152) 
Chickens, at harvest 59 5  Austria 2009 (75) 
Poultry, Healthy 
  Diarrheic 

100 
21 

5.0 
9.5 

014, 002, 045 Netherlands 2012 (89) 

Poultry, mixed 120 1.2  U.K. 1996 (1) 
Deer 30* 36.7 078 Ohio 2010 (51) 
Dogs 165 5.5 010, 014/020, 

039, 045, SLO 
066 

Germany 2012 (148) 

Dogs,  diarrheic 116 25 014, 012, 021, 
107 

Netherlands 2012 (89) 

Dogs 139 10 001 Canada 2010 (179) 
Dogs, hospitalized 360 19 11 ribotypes Canada 2008 (32) 
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Dogs 100 10  U.K. 1996 (1) 
Dogs 52 21  U.K. 1983 (22) 
Duck 2 50  U.K. 1983 (22) 
Goats 40 7.5 001, 066 Switzerland 2012 (142) 
Goose 2 50  U.K. 1983 (22) 
Horses 15 53.3  Canada 2012 (149) 
Horses, Diarrheic 135 17.8 014, 012, 005, 

078, 5 others 
Netherlands 2012 (89) 

Horses 20 5 033 Slovenia 2009 (6) 
Horses, diarrheic 62 23 012 Australia 2011 (165) 
Horses 38 44 12  PCR 

ribotypes 
Canada 2007 (5) 

Horses, Mature, healthy 
  Mature, enteric disorder 
  Foals, <14 days 
  Foals, >14 days 

320 
180 
56 
170 

0.3 
12.2 
29 
1.76 

 Sweden 2003 (15) 

Horses 100 1  U.K. 1996 (1) 
Piglets 23 78.3 078 Belgium 2012 (134) 
Piglets, Conventional 
  Antimicrobial-free 

350 
244 

34 
23 

Toxinotype V North 
Carolina 

2012 (160) 

Piglets, scouring 
  Large, integrated system 
  Smaller regional farms 

 
333 
180 

 
57.7 
27.2 

 U.S. 
Midwest 

2010 (8) 

Piglets, Healthy 
  Diarrheic 

287 
254 

28.6 
22.8 

 Spain 2009 (4) 

Piglets 122 50  Texas 2009 (116) 
Piglets 485 50.9 066, 029, SI 

011, SI 010 
Slovenia 2009 (6) 

Piglets 257 51.8  Slovenia 2008 (127) 
Pigs, Healthy 
  Diarrheic 

100 
36 

0 
25 

078, 023, 005 Netherlands 2012 (89) 

Pigs, adult 345 15.9  U.S. 2011 (166) 
Pigs, at harvest 436 6.9 078 Canada 2011 (182) 
Pigs, at harvest 677 8.6 078, 15 others Netherlands 2011 (86) 
Pigs, at harvest 50 28 015, 6 others Netherlands 2011 (70) 
Pigs, at harvest 61 3.4  Austria 2009 (75) 
Pigs, lactating sows 143 23.8  Texas 2009 (116) 
Pigs, feral 161 4.4  U.S. 2011 (164) 
Sheep, diarrheic 11 18.2 015, 097 Netherlands 2012 (89) 
Sheep 100 1  U.K. 1996 (1) 
Turkey 82 4.9  Italy 2009 (146) 

 Pooled samples from 30 farms  
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Table 2. Reports of C. difficile detected in foods 
 

Food 
Samples 

tested 
% 

positive 
Spore 

concentration 
Cd 

strains Location 
Year 

sampled Ref 
Beef, ground 115 12 ≤10 – 240 

spores/g 
027, 078 Canada 2008 (178) 

Beef, ground 105 1.9 >2 CFU/5g 012 France 2008 (23) 
Beef, ground 32 6.25   Sweden 2008 (175) 
Beef, ground, 
retail 

24 8.3  0088, 
0348 

Manitoba 2007 (174) 

Beef, ground 26 50  027, 078 Arizona 2007 (156) 
Beef, ground 149 6.7  027, 077, 

014 
Canada 2006 (137) 

Beef, ground 53 20.8  M31, 
077, 014, 
M26 

Canada 2005 (139) 

Pork and beef, 
ground 

70 4.3  AI-57, 
053 

Austria 2007-08 (82) 

Pork, ground  34 38 <0.18 – 0.45 
spores/g 

078 Pennsylvania 2011 (35) 

Pork 243 9.5  078 Texas 2008-09 (62) 
Pork, ground 115 12 ≤10 – 60 

spores/g 
027, 078 Canada 2008 (178) 

Pork, ground, 
retail 

24 4.2  0139 Manitoba 2007 (174) 

Pork, chops and 
ground 

393 1.8  027 Canada 2007-08 (111) 

Pork, ground 7 42.9  027, 078 Arizona 2007 (156) 
Pork, sausage 13 23.1  027, 078 Arizona 2007 (156) 
Veal, ground 50 8 Toxin 

detected 
 Pennsylvania ? (73) 

Veal, chops 65 4.6  027 Canada 2006 (137) 
Veal, ground 7 14.3  M31, 

077, 014, 
M26 

Canada 2005 (139) 

Lamb 16 6.3  045 Netherlands 2008-09 (40) 
Poultry 32 12.5  078 Texas 2010 (62) 
Chicken 203 12.8 10 – 99 

spores/g 
078 Canada 2008-09 (180) 

Chicken 257 2.7  001, 003, 
087, 071 

Netherlands 2008-09 (40) 

Turkey, ground 9 44.4  078 Arizona 2007 (156) 
Sausage, 
Summer  

7 14.3  027 Arizona 2007 (156) 

Sausage, 
Braunschweiger 

16 62.5  027, 078 Arizona 2007 (156) 

Sausage, Chorizo 10 30  027, 078 Arizona 2007 (156) 
Fish, Perch 2 50  078 Canada 2010 (110) 
Fish, Salmon 20 5  078 Canada 2010 (110) 
Shellfish, Clams 
and mussels 

52 49  Multiple 
types, not 
078 or 
027 

Italy 2010-11 (124) 
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Food 
Samples 

tested 
% 

positive 
Spore 

concentration 
Cd 

strains Location 
Year 

sampled Ref 
Shellfish, Clams 
and mussels 

6 67  005, 010, 
066 

Italy 2009 (125) 

Shellfish, 
Scallops 

3 33  078 Canada 2010 (110) 

Shellfish, Shrimp 3 33  078 Canada 2010 (110) 
Salads, packaged 40 7.5 <3.0 CFU/g 017, 001 Scotland 2008 (9) 
Vegetables 111 5  078 Canada 2009 (112) 
Vegetables 300 2.3   Wales, UK 1995 (1) 
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